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Part 1: Coding Theory



Messages

Messages are strings of symbols, i.e. "001010", "Hello, World", or "0xDEADBEEF".

The symbols come from a set of elements. Also known as an alphabet. Notationally we'll use "Σ".

A string of K symbols is represented as ΣK. 

Binary strings have Σ = {0, 1}. With this, a byte can be thought of as Σ8

Messages with a single byte as their symbol (i.e. bytestrings) would have Σ = {0, 1, ..., 255}. An 

int64 is Σ8 when Σ is a byte.



Erasures and Errors 

When a data is transmitted/stored, two types of faults can occur:

● Erasure: A known loss (or corruption) of a symbol.
○ You know the position of the fault.
○ Example: An HDD/SSD dies, but we know it's unavailable and what symbols it was supposed to 

store.
○ Example: A physical encoding where a voltage of -1 is "0", 1 is "1" and 0 is "missing".

● Error: An unknown corruption of a symbol.
○ You do not know the position of the fault.
○ A bit flip.
○ A scratch on a CD causing a mis-reading.



2x Redundancy 

A basic scheme for handling errors and erasures: redundancy. We take a message and modify it 

to form a "codeword" which is what we store/transmit.

If we repeat every element twice, we can:

● Correct one erasure per symbol, because we have 2 copies and we know which one is 

good.

● Detect one error per symbol, because we know there is a mismatch (but we don't know 

which is wrong).

Message

ABC

Codeword

AABBCC

w/Erasures

A__BC_

ABABCA

w/Errors

ABABCA



3x Redundancy 

What if we want to also correct errors? We need more redundancy!

If we repeat every element thrice, we can:

● Correct two erasures per symbol, because we have 3 copies and we know which ones are 

good.

● Correct one error per symbol, because we can see there is a mismatch AND we can pick 

the most common symbol (i.e. "A" if it's "AAB"). 

● Detect one XOR two errors per symbol (2 if the errors go to different symbols).

Message

ABC

Codeword

AAABBBCCC

w/Erasures

_A___BC__

w/Errors

AABAABCAB



The Problem with Redundancy

It's expensive.

Can we achieve something similar but with less additional data?



Parity Bit

For binary messages, we can XOR all the bits in the message and get one extra "parity" bit. With 

this we can

● Correct a single erasure in the message by XORing all the other bits (including the parity) 

together.

● Detect a single error per message by repeating the process and seeing if the parity 

matches between what's received and the calculation.

Message

0101

Codeword

01010

w/Erasures

0_010

w/Errors

11010



Generalizing Parity

● Can we have more than one parity bit?

● Does parity work for non-binary messages?

● Can we find a code that adds the least number of symbols to correct a given number of 

errors/erasures?

YES!

But first, some theory...



Linear Block Codes

Injective Mapping: C: ΣK ➝ ΣN

Σ: An alphabet (set of symbols);  |Σ| = q.

ΣK: A string of K symbols from Σ.      ΣK = "message"   ;    ΣN = "block" or "codeword"

Example:  

Message Codeword

abc abca

abb abbc

bab babc

cca ccab

Σ = {a, b, c}

➝ = map a➝0, b➝1, c➝2 

        sum modulo 3

        unmap and append result to message

ex. abc ➝ (0 + 1 + 2) % 3 = 0 = a: abc ➝ abca



Mappings

Mappings have three sets:

● Domain, this is the set that is mapped from. In our case, it's the set of all possible 

messages or ΣK

● Co-Domain, this is the set of possible elements that could be mapped to (but aren't 

necessarily). In our case, it's the set of all possible codewords, or ΣN

● Range, this is the non-proper subset of the co-domain that is mapped to. In our case, it's 

the set of codewords actually mapped to.

Injective means that:

● Every element in the domain is mapped from
● Not necessarily every element in the co-domain is mapped to.

○ Which is the same as saying the range can be smaller than the co-domain.



Simple Parity Coding

00

01

11

10

Domain

Co-Domain

000

001

011

010

110

111

101

100

Range

000

011

110

101

All 
Possible 

Messages

Actually 
Mapped 

Codewords

Possible 
Codewords



Correcting Erasures

We can correct an erasure by ignoring the erased symbol in the codeword and every codeword in 

the range and seeing if there is a single match.



Simple Parity Coding - Erasure

00

01

11

10

Domain

Co-Domain

000

001

011

010

110

111

101

100

Range

000

011

110

101

Received 
Codeword

0_1



Hamming Distance

Distance(ΣK, ΣK) -> ℕ    The substitution-only distance between two strings

Distance(abc, abc) -> 0

Distance(abc, aac) -> 1 (in position 2)

Distance(abc, bac) -> 2 (in position 1 and 2)

Distance(abc, cab) -> 3 (in all positions)

In a binary string, the hamming distance is the number of bitflips between 2 strings.



Simple Parity Coding - Distance

00

01

11

10

Domain

Co-Domain

000

001

011

010

110

111

101

100

Range

000

011

110

101

Distance = 2

Distance = 1



Hamming Distance Visualized

● I'll be using a list for most demos, but the true way of thinking about distance is as a graph 

where all codewords in the domain are vertices and there's an edge between any vertices 

distance 1 away from each other.

● We can represent this graph geometrically and see some interesting results.

● For simplicity, let's just consider binary codes.



Hamming Distance Visualized - Binary 
Codes

Binary Codewords Length 1

0 1



Hamming Distance Visualized - Binary 
Codes

Binary Codewords Length 1

0 1

Binary Codewords Length 2

00 01

10 11



Hamming Distance Visualized - Binary 
Codes

Binary Codewords Length 1

0 1

Binary Codewords Length 2

00 01

10 11

Binary Codewords Length 3

000

010

001

011

100

110

101

111



Simple Parity Coding - Distance Visualized

Binary Codewords Length 3

000

010

001

011

100

110

101

111

00

01

11

10

Domain

Co-Domain

000

001

011

010

110

111

101

100

Range

000

011

110

101



Hamming Distance Visualized - Binary 
Codes

● In general, binary codewords of length N form a hypercube of N dimensions.

● All codeword graphs have qK vertices (all possible codewords) each with (q-1) * k edges 

(all possible single substitutions).



Hamming Distance Visualized - Paths



Gray Codes

● An ordering of binary numbers such that any 2 numbers differ by only one symbol.

● Equivalent to a Hamiltonian path through the codeword graph. 



Simple Parity Coding - Hamiltonian

00

01

11

10

Domain

Co-Domain

000

001

011

010

110

111

101

100

Distance = 1

Binary Codewords Length 3

000

010

001

011

100

110

101

111Also Distance = 1



Detecting Errors

We can detect an error if we receive a codeword that is not in the range.



Simple Parity Coding - Error Detection

00

01

11

10

Domain

Co-Domain

000

001

011

010

110

111

101

100

Range

000

011

110

101

Received 
Codeword

001



Correcting Errors

We can correct a single error if there is a single closest codeword (by hamming distance) to what 

we received in the range.



Simple Parity Coding - Error

00

01

11

10

Domain

Co-Domain

000

001

011

010

110

111

101

100

Range

000

011

110

101

Received 
Codeword

001



Hamming (7,4) Coding - Single Error

0000

0001

0011

...

Domain

Co-Domain

0000000

0000001

0000011

0000101

0000111

0001111

0001110

...

Range

0000000

0001111

0011001

0010110

...

Received 
Codeword

0000111



Hamming (7,4) Coding - Double Error

0000

0001

0011

...

Domain

Co-Domain

0000000

0000001

0000011

0000101

0000111

0001111

0001110

...

Range

0000000

0001111

0011001

0010110

Received 
Codeword

0000101



Hamming Distance, Errors, and Erasures

Let's say that "d" is the minimum Hamming distance between any two possible strings for a set 

of strings C. That is, 

d = min(Distance(a, b) ∀ a, b | a ≠ b, a ∈ C, b ∈ C)) 



Simple Parity Coding - Distance

00

01

11

10

Domain

Co-Domain

000

001

011

010

110

111

101

100

Range

000

011

110

101

Distance = 2

Distance = 1



Codewords and Hamming Distance

Why do we care about minimum Hamming distance, d?

When d for a set is (such as the range):

● d = 1, A single error is undetectable, a single erasure is uncorrectable



No Change Coding - d=1

00

01

11

10

Domain Co-Domain Range

Received 
Codeword

01

00

01

11

10

00

01

11

10



Codewords and Hamming Distance

Why do we care about minimum Hamming distance, d?

When d for a set is (such as the range):

● d = 1, A single error is undetectable, a single erasure is uncorrectable
● d = 2, A single error is detectable, but not correctable. A single erasure is correctable



Simple Parity Coding - d=2 - Error

00

01

11

10

Domain

Co-Domain

000

001

011

010

110

111

101

100

Range

000

011

110
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Received 
Codeword

001



Simple Parity Coding - d=2 - Erasure

00

01

11

10

Domain

Co-Domain

000

001

011

010

110

111

101

100

Range

000

011

110

101

Received 
Codeword

0_1



Codewords and Hamming Distance

Why do we care about minimum Hamming distance, d?

When d for a set is (such as the range):

● d = 1, A single error is undetectable, a single erasure is uncorrectable
● d = 2, A single error is detectable, but not correctable. A single erasure is correctable
● d = 3, Two errors are detectable, one is correctable. Two erasures are correctable
● d = 4, Three errors are detectable, one error is correctable. Three erasures are correctable



Hamming (7,4) Coding - d=4

0000

0001

0011

...

Domain

Co-Domain

0000000

0000001

0000011

0000101

0000111
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0001110

...
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Single Error

0000111



Hamming (7,4) Coding - d=4

0000
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...
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Co-Domain
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0000001
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0000111
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0001110

...
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0000000
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...
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Codeword - 
3x Erasures

0_01__1



Hamming (7,4) Coding - d=4

0000

0001
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...
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0000101



Codewords and Hamming Distance

Why do we care about minimum Hamming distance, d?

When d for a set is (such as the range):

● d = 1, A single error is undetectable, a single erasure is uncorrectable
● d = 2, A single error is detectable, but not correctable. A single erasure is correctable
● d = 3, Two errors are detectable, one is correctable. Two erasures are correctable
● d = 4, Three errors are detectable, one error is correctable. Three erasures are correctable
● d = 5, Four errors are detectable, two errors are correctable. Four erasures are correctable
● ...

● In general:
○ d-1 errors are detectable
○ d-1 erasures are correctable
○ ⌊(d-1)/2⌋ errors are correctable



Hamming (7,4) Coding - d=4
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Optimal Codes

Great! So we know we can use the minimal Hamming distance between codewords in the range 

to predict how many errors/erasures we can detect and correct.

But in general, do codes exist where the minimal distance between codewords in the range is 

maximized? That is, are there optimal codes?



Singleton Bound

All coding schemes follow the Singleton bound!

Singleton Bound: k + d ≤ n + 1        equivalently: d ≤ n - k + 1      equivalently: n ≥ k + d - 1

k = message length

d = minimum Hamming distance between any 2 codewords

n = codeword length

Implications (in English): 

● Every codeword differs in at least one position.

● To increase the distance between codewords by 1, the codeword length needs to be 

increased by at least 1. 



"Maximum Distance Separable" codes. Codes that map input messages as far apart as possible.

Codes that improve upon the Singleton bound by changing the inequality to an equality.

MDS Bound: k + d = n + 1

Implications in English:

● Every additional symbol in the codeword increases the minimum distance by 1.

● One cannot generate a better code than an MDS code (without violating the singleton 

bound). 

● Any code that is an MDS code is optimal in terms of codeword Hamming distance.

MDS Codes



Trivial MDS Codes

Do Nothing Code: ΣK ➝ ΣK    (aka `lambda x: x`)

In this case, k = n and because every different message must differ in at least one place

k + d = n + 1 (because d = 1 and k = n)

No Information Code: ()1 ➝ ()1    (aka a code that has a single message/codeword)

Same as above, but now k = n = 1.



Trivial MDS Codes - Continued

Single Parity Symbol: ΣK ➝ ΣK+1

● If q = 2, this is a parity bit (remember that q = |Σ|) which you can get by XORing all the

message bits together (because q = 2, bits can represent the symbols).

● If q > 2 and q is prime, then you can sum all the symbols together modulo q.

We have d = 2 and n = k + 1, so k + 2 = (k+1) + 1

Single Symbol Replication:  Σ1➝ ΣR

A code that just replicates a single symbol message R times. n = r = d since every

different message is now different in r places and also r times as long. k = 1 by definition

k + r = r + 1  (or: 1 + r = r + 1)



3x Redundancy - Revisited: Is it MDS?

MDS Bound: k + d = n + 1

3x Redundancy is a coding scheme where ΣK➝ Σ3K, so let's plug in the numbers!

k = k, n = 3k

What about d? d = 3 because without redundancy, d = 1, now we've repeated every symbol 3 

times, so the minimum distance is also 3x.

Is it optimal? Does k + 3 = 3k + 1 (for all k)? NO!

3x redundancy can in some cases detect/correct more errors, but in general it can only 

guarantee to detect 3 and correct 1 (aka floor(d-1/2))!



Part 2: Reed Solomon 
Codes



What is it?

Wikipedia: "Reed–Solomon codes are a group of error-correcting codes that 
were introduced by Irving S. Reed and Gustave Solomon in 1960. They have 
many applications, the most prominent of which include consumer 
technologies such as CDs, DVDs, Blu-ray discs, QR codes, data transmission 
technologies such as DSL and WiMAX, broadcast systems such as satellite 
communications, DVB and ATSC, and storage systems such as RAID 6."

https://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction


Polynomials



Polynomials - Definition

An expression consisting of variables and coefficients using only the operations of addition, 

subtraction, multiplication, division, and non-negative integer exponents on the variables.

We'll only concern ourselves with polynomials over a single variable.

Notationally, we'll say a polynomial is a function over x with the form:

f(x) = a
o
x0 + a

1
x1 + a

2
x2 + ... + a

n
xn     more simply:      f(x) = a

0
 + a

1
x + a

2
x2 + ... + a

n
xn

Polynomials represent everything that can be done with just addition and multiplication.



Polynomial - Representations

Polynomials can be represented in many different ways:

● As a function:
○ f(x) = 0
○ f(x) = -7
○ f(x) = 3 + 2x -8x2

○ f(x) = 9x4

○ f(x) = (2 - x)(x2+1) = 2 - x + 2x2 - x3

● A set of points:
○ {(0, -4), (2, 0), (4, 12)} = f(x) = x2 - 4 = -4 + x2

● A graph

● A list of coefficients:
○ [0, -1, 0, 5] => 5x3 - x

{(-4, 0), (-1, 0), (2, 0)}
f(x) = (x+4)(x+1)(x-2)
f(x) = x3 + 3x2 - 6x - 8
f(x) = x(x(x + 3) - 6) - 8



Polynomials - From Points

It's clear how the functions are polynomials (by notation).

It's clear how to turn the list of coefficients into a function.

What about the points (or the graph)? 

● Can we always construct a polynomial from a set of points?



Polynomials - From Points

What if you have the empty set? {}

● Map it to the "zero" polynomial, i.e. 0.

What if you have a set of just one point? {(x
0

, y
0

)}

● Just make the function always return y
o 

! 

● f(x) = y
0



Polynomials - From Points

What if you have a set of 2 points? {(x
0

, y
0

), (x
1

, y
1

)}

● f(x
0

) = y
0

● f(x
1

) = y
1

But what's f(x) ? How can we combine the two equations?



Polynomials - From Points

Just add them?                    

f(x) = y
0

 + y
1   

Does f(x
0

) = y
0

 + y
1

  ?   No...



Polynomials - From Points

Ah, use a conditional!         

f(x) = if (x == x
0

) then y
0

 else y
1

        

But how can we use just addition and multiplication without "if"s?



Polynomials - From Points

Can we at least see if x is x
0

?           

x - x
0

 = 0 only if x is x
0

And multiplication by 0 is 0...so we can "switch off" a term...



Polynomials - From Points

Can we do it by "switching off" terms?           

If we want to turn off y
1

 when x = x
0

, then...

f(x) = y
0

 + (x-x
0

)y
1

If we want to turn off y
0

 when x = x
1

 too, then...

f(x) = (x-x
1

)y
0

 + (x-x
0

)y
1

Does this work now?

f(x
0

) = (x
0

-x
1

)y
0

 + 0y
1

 = (x
0

-x
1

)y
0

 ≠ y
0

       ...No, that's a multiple of y
0

, but not y
0

 itself



Polynomials - From Points

Can we "normalize" the "switched on" term, i.e. make the "switch" become 1?           

● Anything divided by itself is 1

● 10/10 = 1 

The y
0

 switch is (x-x
1

), and it's only "on" when x = x
0

, so to normalize it when it's on we make it...

Altogether: 



Polynomials - From Points

Did we do it?           

Let's try it...



Polynomials - From Points

What we achieved was like "boolean" logic, but with mathematical operators.

In bash-like notation we might have said:

f(x) = x != x1 && y0 || x != x0 && y1

● We do inequality testing with "-" instead of "!=" which gives us 0 or not 0.
○ We then normalize this to 0 and 1
○ Thus 0 and 1 become our "booleans"

● Multiplication becomes our &&: x && false = false, similarly x * 0 = 0

● Addition becomes our ||: x || false = x, similarly x + 0 = x

● There's more to this intuition in later slides...



Polynomials - From Points

Whew! But now what if you have a set of 3 points? {(x
0

, y
0

), (x
1

, y
1

), (x
2

, y
2

)}

● f(x
0

) = y
0

● f(x
1

) = y
1

● f(x
2

) = y
2

Can we extend the switch?

● We want y
0

 when x is not x
1

 and not x
2

● (x - x
1

) switches off (becomes 0) when x is x
1

, it's similar for (x - x
2

)

● Let's just "and" them together, i.e. multiply them

● (x - x
1

) (x - x
2

) is 0 when the value is x
1

 or x
2

 but it's not zero when x
0

● Then let's normalize when x=x
0

 same as before by dividing by (x
0

 - x
1

) (x
0

 - x
2

)



Polynomials - From Points

Whew! But now what if you have a set of 3 points? {(x
0

, y
0

), (x
1

, y
1

), (x
2

, y
2

)}

● f(x
0

) = y
0

● f(x
1

) = y
1

● f(x
2

) = y
2

What are we left with?



Polynomials - From Points

I'm not done yet! What if you have a set of n points? {(x
0

, y
0

), (x
1

, y
1

), ..., (x
n
, y

n
)}

Can we generalize the switch?

For point (x
i
, y

i
) we want to "turn off" for any other point:

Normalized:



Polynomials - From Points

I'm not done yet! What if you have a set of n points? {(x
0

, y
0

), (x
1

, y
1

), ..., (x
n
, y

n
)}

Can we put it all together?



Polynomials - From Points

It's clear how the functions are polynomials.

It's clear how to turn the list of coefficients into a function.

What about the points (or the graph)? 

● Can we always construct a polynomial from a set of points?
○ Yes



Polynomials - From Points

It's clear how the functions are polynomials.

It's clear how to turn the list of coefficients into a function.

What about the points (or the graph)? 

● Can we always construct a polynomial from a set of points?
○ Yes

● Is the polynomial we construct unique?



Polynomials - Degrees

First, an aside about degrees of polynomials

The degree is the value of the largest exponent in the polynomial.

● degree(x3+2) == 3

● degree(5) == 0

● degree(0) == -1 (by convention)

● degree(a
n
xn+...+a

0
x0) == n



Polynomials - Degrees

But what is the degree of a polynomial generated from a set of points?

It's a tricky question. We could imagine that any number of points were all selected from a line, 

in which case there is a degree 1 polynomial that matches.

However, we can't know that. So what about the polynomial algorithm from before?

degree({(x
0

, y
0

), (x
1

, y
1

), ..., (x
n-1

, y
n-1

)}) == n-1

Our equation took n points and for each y
i
 multiplied n-1 terms, each containing x, together 

(excluding the one we didn't want to "switch off"). Then it summed the terms (which cannot 

change the degree). The degree must thus be n-1.



Polynomials - From Points

It's clear how the functions are polynomials.

It's clear how to turn the list of coefficients into a function.

What about the points (or the graph)? 

● Can we always construct a polynomial from a set of points?
○ Yes

● Is the polynomial we construct from n points unique among polynomials of degree n-1?



Polynomials - From Points - Uniqueness

A root of a polynomial is an input such that the output is 0. f(x) = 0 means x is a root.

Theorem: The zero polynomial is the only polynomial over ℝ (the set of real numbers) of degree 

(at most) n which has more than n distinct roots.

● Alternatively: Every non-zero degree n polynomial has, counted with multiplicity, exactly 

n complex roots. 

● This is the "Fundamental Theorem of Algebra"

Uniqueness Proof: Suppose we can form 2 polynomials from a set of n points, g and f. The degree 

of both would be (at most) n-1. We can form a new polynomial (g-f)(x) = g(x) - f(x). This 

polynomial is 0 in n points (all input points since they're the same), but its degree is n-1 and by 

the theorem it must thus be the zero polynomial. Thus g and f are the same.



Polynomials - From Points

It's clear how the functions are polynomials.

It's clear how to turn the list of coefficients into a function.

What about the points (or the graph)? 

● Can we always construct a polynomial from a set of points?
○ Yes

● Is the polynomial we construct from n points unique among polynomials of degree n-1?
○ Yes



Reed Solomon



Reed Solomon - What we know

● We know we can take N points and form a unique polynomial of degree N-1

● Thus if we have any N points which came from a polynomial (of degree N-1) we can 

(re-)generate the polynomial with them.
○ If we have 2 different sets of N points from the (degree n-1) polynomial they'd generate the same 

polynomial since a set of N points generates a unique polynomial,. 

● If we took a few more points along the polynomial we'd have some redundancy.
○ Specifically, if we take M additional points (so we have N+M) then we can lose any M points and 

still have N left to re-generate the polynomial.



Reed Solomon - An Algorithm

An algorithm for RS:

● Take N symbols encoded as integers: [y
0

, y
1

, y
2

, ..., y
n-1

]

● Turn them into points by using their index as the x value: 

  {(0, y
0

), (1, y
1

), (2, y
2

), ..., (n-1, y
n-1

)}  i.e. 

● Generate a polynomial (of degree n-1) with the N points.

● Generate a few more points along the polynomial for redundancy.
○ e.g. find [f(n), f(n+1), f(n+2), ..., f(n+m)] where m is the number of additional points.

● If you lose a few points, reconstruct the polynomial with any N remaining points.
○ This requires you to remember the 'x' value for the points.
○ This could be labels for your HDDs/SSDs.



Reed Solomon - Devil's in the Details

Some problems with our algorithm:

● All that polynomial stuff is really complicated and thus slow.

● It uses polynomials over ℝ, but computers don't like real numbers and floats are no 

substitute.

● It's not clear how to turn our symbols into integers in general. What if the new points we 

generate do not map back?

We'll look next how to address these problems...



Improving on Lagrangian Interpolation

We know all polynomials can be represented in the form  a
0

x0 + a
1

x1 + ... + a
n
xn

What if we represent our set of points like this:

y
0

 = a
0

x
0

0 + a
1

x
0

1 + ... + a
n-1

x
0

n-1  

y
1

 = a
0

x
1

0 + a
1

x
1

1 + ... + a
n-1

x
1

n-1  

...

y
n-1

 = a
0

x
n-1

0 + a
1

x
n-1

1 + ... + a
n-1

x
n-1

n-1 

Now we have a system of N equations, we have N unknowns (the coefficients, we know the x 

and y values of the points)...can we use matrices?



Improving on Lagrangian Interpolation

First, let's separate out the coefficients from the x points and rewrite it using matrix notation:

y
0

 = a
0

x
0

0 + a
1

x
0

1 + ... + a
n
x

0
n  

y
1

 = a
0

x
1

0 + a
1

x
1

1 + ... + a
n
x

1
n  

...

y
n
 = a

0
x

n
0 + a

1
x

n
1 + ... + a

n
x

n
n 

N.B. It should be "n-1" everywhere we have "n". My bad.



Improving on Lagrangian Interpolation

We can write the matrix equation more generally as:

XA = Y

And in theory we can solve for A like so:

X-1XA = X-1Y

-> IA = X-1Y                        Note: "I" is the identity matrix. It's like "1" for matrix multiplication.

-> A = X-1Y

BUT, can we guarantee that X is always invertible?



Vandermonde Matrices

Vandermonde matrices are those of the form

Just like our X matrix from before.



Vandermonde Matrices

Vandermonde matrices have a key property. The determinant is:

As long as every x
i
 value is distinct, then no term will be 0 and thus the determinant will not be 0.

Non-zero determinant means that a matrix is invertible! Because our X matrix from before was 

a vandermonde matrix, and because we're using N distinct points (i.e. their x values must all be 

different), it must be invertible.



Vandermonde Matrices

Amended RS encoding algorithm - generating the polynomial:

A = X-1Y

● If we want to encode a message of N symbols, generate an N*N Vandermonde matrix.
○ The x values can just be [0, N), so we only need to build the matrix once.

● Invert the matrix. This can be done with Gaussian Elimination (see wikipedia).
○ Again, because X is constant, we only need to invert once.

● To generate a polynomial from N symbols, multiply the inverted Vandermonde matrix by 

the N symbols to generate the polynomial's coefficients.
○ The inverted matrix is fixed, so for a different set of N symbols, you just need to do the matrix 

multiplication.



Vandermonde Matrices

Amended RS encoding algorithm - generating the parity symbols:

Y' = X'X-1Y

● Make a larger Vandermonde matrix M*N (extra rows for the extra symbols to generate).
○ M = N + P where P is the number of parity symbols to add.
○ Let's call it X'

● If we multiply X' by A we get Y', that is, our original symbols plus the new parity symbols.

● We know that A = X-1Y and Y' = X'A. Thus Y' = X'X-1Y 
○ X' is constant and X-1 is constant and if we pre-multiply them the result is constant.

● We can form an encoding matrix E = X'X-1, then we generate all our points with the 

equation: Y' = EY.
○ Multiplying X' by X-1 will cause the top (square) part of X' to be the identity matrix!
○ That means we do not modify the input data, we just generate new parity symbols!



Vandermonde Matrices

Amended RS encoding algorithm - generating the parity symbols:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

X0 X1 X2 X3

X4 X5 X6 X7

d0

d1

d2

d3

d0

d1

d2

d3

p0

p1



Vandermonde Matrices

Amended RS decoding algorithm:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

X0 X1 X2 X3

X4 X5 X6 X7

d0

d1

d2

d3

d0

d1

d2

d3

p0

p1



Vandermonde Matrices

Amended RS decoding algorithm:

1 0 0 0

0 0 1 0

0 0 0 1

X4 X5 X6 X7

d0

d1

d2

d3

d0

d2

d3

p1



Vandermonde Matrices

Amended RS decoding algorithm:

1 0 0 0

0 0 1 0

0 0 0 1

X4 X5 X6 X7

d0

d1

d2

d3

d0

d2

d3

p1

1 0 0 0

0 0 1 0

0 0 0 1

X4 X5 X6 X7

-1

1 0 0 0

0 0 1 0

0 0 0 1

X4 X5 X6 X7

-1



Vandermonde Matrices

Amended RS decoding algorithm:

d0

d1

d2

d3

d0

d2

d3

p1

1 0 0 0

0 0 1 0

0 0 0 1

X4 X5 X6 X7

-1



More problems...

We've solved the problem of using slow polynomials by replacing them with fast matrices...but 

we still have two problems:

● We use matrices (polynomials) over ℝ, but computers don't like real numbers and floats 

are not a good substitute.

● It's not clear how to turn our symbols into integers in general. What if the new points we 

generate do not map back?

So, we need something other than real numbers, ℝ, but that thing must support addition, 

subtraction, multiplication, division, and exponentiation (by non-negative integers).

Hmm...



Finite Fields



Abstract Algebra

● Goal: Find the important properties of algebra and abstract them over things other than 

numbers.

● Many structures, but we'll just introduce a few.

● Think of each like an "interface" (with each building on the last).

Magma Semigroup Monoid Group Ring

FieldThis is the one that has all those sweet 
properties we need for polynomials



Magma

● A set S with a binary operation: •.

● The operation is "closed" (i.e. x • y ∈ S)
○ Does not have to be associative.
○ Does not have to be commutative.

● Example: The set of integers under the addition (+) operator
○ Add any two integers and you get an integer.
○ However, integers with addition is more than just a magma.

● Example: vector cross product of R3 (aka 3D vectors)
○ This operation is closed, but not associative, commutative, has no identity, etc.



Semigroup

● A magma, but where the binary operation is associative.
○ Does not have to be commutative.

● x • y • z = (x • y) • z = x • (y • z)

● Example: The set of positive integers under addition.
○ Addition is closed and associative.

● Example: The set of integers under either "max" or "min".
○ max(x, y) is closed, so is min(x, y)
○ Associative, max(x, max(y, z)) = max(max(x, y), z)
○ Also commutative.
○ No identity element, though.



● A semigroup, but with an identity element, 0 or e.
○ Still does not have to be commutative.

● x • 0 = 0 • x = x 

● Example: The set of integers under addition.
○ Addition is closed and associative and "0" is the identity.

● Example: The set of integers under multiplication.
○ Multiplication is closed and associative and "1" is the identity.

● Example: String concatenation
○ String concatenation is closed and associative and "" is the identity.
○ It is not commutative.

● Example: max of natural numbers with "0" as the identity.

Monoid



● A monoid, but with inverses for every element (i.e. x-1 or -x).
○ Still does not have to be commutative. An "abelian" group is a group with a commutative operation.

● x • (-x) = (-x) • x = 0 (i.e. the identity, i.e. "e")

● Example: The set of integers under addition.
○ Addition is closed and associative, "0" is the identity, and negation provides the inverse.

● NON-Example: the set of integers under multiplication.
○ Multiplication is closed and associative and "1" is the identity, but integer reciprocals do not exist. 

● Example: The set of rational numbers under multiplication.
○ Same as with the set of integers, but now we can do x-1 = 1/x

Group



● A group, but with a second associative binary operation that has its own identity.
○ Generalizes the notion of addition and multiplication.
○ The first operation ("addition") must have inverses, but not the second.

● x × y ∈ S

● Example: Integers with addition and multiplication.
○ Division is not defined, but addition, subtraction (addition of inverses), and multiplication is. Two 

identity elements, 0 and 1.

● Example: Booleans with ^ (XOR) and && (AND).
○ ^ and && are both closed (produce booleans)
○ False is the identity for ^ (False ^ x = x) and True is the identity for && (True && x = x)
○ For XOR, every element is its own inverse (x ^ x = 0)
○ Also works for sets of sets with disjoint union (analog to XOR) and intersection (analog to AND).

Ring



Field

● A ring, but where every element has an inverse under the second binary operator.
○ Generalizes the notion of division; inverse is not necessarily defined for the zero of the first binary 

operator.

● x × x-1 = 0   ("0" is the identity of the second operator)

● Example: Rational, real, and complex numbers
○ All define addition, subtraction (additive inverse), multiplication, and division (multiplicative 

inverse). All are closed and associative.
○ 0 and 1 are the respective identities. 

● Example: Integers modulo a prime number
○ Now division can be defined as the element y such that x × x-1 = 1

■ This is guaranteed to exist thanks to Bezout's Identity



Because computers tend to not like infinite precision, we'd like to use finite numbers like 

integers in our computations.

Our polynomials (our our matrices) require addition, additive inverses, multiplication, and 

multiplicative inverses...so the polynomials require a Field!

Real numbers are fields, but we can construct a finite field too.

Even better, we may be able to construct finite fields with the same number of elements as we 

have symbols so we can map them 1:1! 

Finite Fields



Finite Fields

It's easy to construct an additive group by just doing addition and taking the result modulo some 

number. Take hours (in 24h format) for example:

● 22:25 + 8:00 hours == 30:25 MOD 24 = 6:25

● Additive inverses work too: 6:25 - 8:00 == -1:35 MOD 24 = 22:25

Doing multiplication modulo some number works too:

● 5 * 5 MOD 24 = 25 MOD 24 = 1

● 4 * 8 MOD 24 = 32 MOD 24 = 8



Finite Fields

But what about multiplicative inverses? 

Remember a multiplicative inverse is defined as x-1 such that x * x-1 = 1

For every element, another element (possible the same) must exist such that x*y = 1, thus y = x-1

Let's take the presumptive "field" with 4 elements....

Uh oh, no such element x-1 exists for x=2.

Why? Because 2 is not coprime to the field size. 

Elements: {0, 1, 2, 3}

Multiplication: * MOD 4

● 2*0 MOD 4 = 0

● 2*1 MOD 4 = 2 MOD 4 = 2

● 2*2 MOD 4 = 4 MOD 4 = 0

● 2*3 MOD 4 = 6 MOD 4 = 2



Coprimality

Let's illustrate why co-primality is necessary with a clock...

Here are multiples of 3 MOD 12:

GCD(12, 3) = 3, so the two are NOT coprime

 



Coprimality

Here are multiples of 5 MOD 12:         GCD(5, 12) = 1 



Finite Fields - Primes

Okay, so for x to be guaranteed to have a multiplicative inverse it must be coprime to the field 

size. That is, GCD(x, q) = 1.

This must be true for all elements in the field.

Which numbers are coprime to all numbers less than them? You guessed it!

Primes!



Integers with all operations modulo a prime are finite and they are fields. Yay!

But integers modulo a prime power (e.g. 2N) are also finite and also fields!

● 2N generates a lot of numbers that programmers like, so this is cool.

Prime-power finite fields are commonly called Galois Fields after Évariste Galois. 

● Technically finite fields == Galois fields, but I usually see the term "Galois fields" when 

dealing with fields of size q2+ and "Finite fields" when dealing with fields of size q1.

Finite Fields - Prime Powers

https://en.wikipedia.org/wiki/%C3%89variste_Galois


Galois Fields

How do we make a field with qN elements (also written: GF(2N)? Do we still mod? Let's try with 

22...

Elements: {0, 1, 2, 3}

Multiplication: * MOD 4

● 1*2 MOD 4 = 2

● 2*2 MOD 4 = 4 MOD 4 = 0

● 2*3 MOD 4 = 6 MOD 4 = 2

● 3*2 MOD 4 = 6 MOD 4 = 2

Uh oh... What's the multiplicative inverse of 2? i.e. what X exists such that 2*X = 1? If 
we don't have a multiplicative inverse it's not a field!



Galois Fields

How do we make a field with 22? Here's a crazy idea... what if we just pretend it's 2 separate field 

elements of size 2?

So our elements {0, 1, 2, 3} become:

● 0:  

● 1:

● 2:

● 3:

0 0

0 1

1 0

1 1

This might seem familiar...



Galois Fields - Addition

How do we do addition with our new elements? Well, each element just maps to 2 different 

elements, so add them independently the way we did before, + MOD 2 ?

So our elements {0, 1, 2, 3} become:

● 0:  

● 1:

● 2:

● 3:

0 0

0 1

1 0

1 1

  2
+3
----
=1

1 0

+ 1 1

= 0 1

  1
+3
----
=2

0 1

+ 1 1

= 1 0

It's like normal addition, but now when we go "over" (i.e. 1+1 
= 2) there's no carry as we just do MOD within the single 
element...so let's call it carryless addition.



Galois Fields - Addition Table

+ 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

Here's the full addition table:

Remember that the additive inverse is -x such that x + -x = 0. Here, every element is its 
own additive inverse!



Galois Fields - Multiplication

Now, how do we do multiplication with our new elements? Well, multiplication is just repeated 

(and shifted) addition, so let's try that?

● 0:  

● 1:

● 2:

● 3:

0 0

0 1

1 0

1 1

1 0

x 1 1

+ 1 0

1 0 0

= 1 1 0

Uh oh... we got an element not in the 
field, but multiplication must be a 
closure.

Can we somehow "mod" it back into 
the field?



Galois Fields - Polynomials

The interpretation of a qN field as N separate elements in a field of size q makes the elements 

behave a lot like a polynomial...

A polynomial looks like:   f(x) = a
0

x0 + a
1

x1 + a
2

x2 + ... + a
n
xn

If we want to add two polynomials, we have to do it term by term. That is, the x0s go together 

and the x1s go together, etc.

If you multiply two polynomials, you "shift" the degree up.  2x3 * 3x2 = 6x5

So Galois fields of size qN are like polynomials of degree N-1, where the coefficients are 

evaluated MOD q.



Galois Fields - Polynomials

Great, they're polynomials, but when we multiply two of them together, they get too big still!

Well, polynomials have something just like prime numbers called irreducible polynomials. These 

are polynomials that cannot be formed by multiplying two other polynomials together. 

In 2N here are some:

● x

● x+1

● x2+x+1

● x3+x+1

In general we can always find an irreducible polynomial of degree N. Similar to with regular 

primes, an irreducible polynomial is "coprime" to all other polynomials less than it.



Galois Fields - Modulo Polynomials

What does it mean to find a polynomial "modulo" another polynomial?

With positive integer numbers, division of X by Y does two things: 

1. Tells you how many times you can subtract Y from X and have a result >0 (or, until X < Y)

2. Tells you what the result is (the "remainder").

Modulo is the operation that gives you just the remainder after subtracting Y as many times as 

possible.

So, if X and Y are polynomials and you want X MOD Y, just subtract Y from X until X < Y (or until 

degree(X) < degree(Y)).

In GF(2N) subtraction and addition are both XOR!



Galois Fields - Modulo Polynomials

1 0 1 0
GF(2N) example 10 * 12

1 1 0 0

0 0 0 0

0 0 0 0

1 0 1 0

1 0 1 0

1 1 1 1 0 0 0

Multiplication Step:

Result:

10:

12:



Galois Fields - Modulo Polynomials

GF(2N) example: 10 * 12
Irreducible: x4+x+1 (10011)
Reduction Step

1 1 1 1 0 0 0Result:

1 0 0 1 1Irreducible:

1 1 1 1 0 0 0

1 0 0 1 1

1 1 0 1 0 0

0 1 1 0 0 1 0

1 0 0 1 1

1 0 1 0 0

1.

2. 0 0 1 0 1 0 0

1 0 0 1 1

0 1 1 1

3.

10 * 12 = 7



Galois Fields - Division

Now we have one operation remaining: division. Remember, this is equivalent to finding the 

multiplicative inverse for a number. That is, X/Y = X*Y-1.

There are (at least) 4 ways to find Y-1:

● Use the polynomial extended Euclidean algorithm (which uses Bezout's identity).

● Loop through every element of the (finite) field and break when you find an element Y-1 

such that Y * Y-1 = 1. That is, brute force.
○ If building a multiplication table, this can be done at the same time.

● Work in log-space, that is log(x / y) = log(x) - log(y) (see appendix for more).

● Build an inverses table from a method above.

https://en.wikipedia.org/wiki/Polynomial_greatest_common_divisor#B%C3%A9zout's_identity_and_extended_GCD_algorithm


Galois Fields - Summary

So, to have finite fields with qN elements, i.e. GF(qN) we:

● Pretend there are N different elements in a field of size q.

● Equivalently, we say the elements are polynomials.

● Addition and subtraction are carryless (it's polynomial addition/subtraction MOD q).
○ In GF(2N) both addition and subtraction are XOR.

● Multiplication is normal multiplication with carryless addition...but then we reduce the 

result with some irreducible polynomial of degree N.
○ It can be any polynomial of degree N. Usually there will be several irreducible polynomials.
○ The result polynomial should be degree N-1

● Division is multiplication by an element's multiplicative inverse.
○ Because we use an irreducible polynomial, all elements less than it must be "coprime" to it and thus 

we know there will be an element x-1 for each x such that x-1*x = 1.



Galois Fields And Others Bits

Because we're working with computers, we likely want to work with things like bits and bytes. 

Luckily for us bits correspond to GF(2) and bytes correspond to GF(28)!

Thus, we can do our Reed Solomon computations using GF(2N) for some N (8 or 16 are common). 

Finally we solved our last 2 problems:

● We use matrices (polynomials) over ℝ, but computers don't like real numbers and floats 

are not a good substitute.
○ Not anymore! We use finite fields now.

● It's not clear how to turn our symbols into integers in general. What if the new points we 

generate do not map back?
○ Well, if the symbols we want to work with are binary in nature (i.e. 2N) then we can just use GF(2N) 

and have a 1:1 mapping.



Reed Solomon - Summary

● Reed Solomon is generating a polynomial from a set of input data "points" and then 

generating redundancy by finding a few more points along the polynomial.

● We can generate a matrix to do the same thing, but much faster than futzing with 

polynomials.

● Polynomials work with any kind of field. Because our computers are finite, we want to use 

finite fields.

● Specifically, because we usually work with binary data (e.g. bytes), we use Galois fields 

with 2N elements, that is, GF(2N) for our points and our operations on them.

It's as simple as that!

The next few slides (the appendix) has some more details on optimizations and other random 

things I think are interesting.



Appendix



Polynomials - Another Intuition for Degrees

On a previous slide I said that with N points we can form a polynomial of degree N-1...let's 

consider how this looks for a few values of N...

{(0.5, 5)}
{(0, -3), (2, 1)} {(-1, 6), (0, 0), (0.5, 1.5)}



rs=1.2 == r=3?

This is a question from a coworker: Does rs=1.2 do the same thing as r=3?

Yes! It's really cool how we can prove this. We know that with n points we'll construct a 

polynomial of degree n-1, so if we have 1 (data) point, then we'll construct a polynomial of 

degree 0. A polynomial of degree 0 is constant (the highest x term is x0 which is always 1, and 

thus x is ignored). And, the constructed polynomial must satisfy f(x
0

) = y
0

. So, it's constant and at 

least one point is (x
0

, y
0

) so we know that f(x) over all x values MUST be y
0

, and thus we've just 

done replication (but with RS).

Note too that we had a proof much further up that replicating a single symbol is an MDS code 

(and RS is an MDS code), so this is not a surprise.  



Faster Galois Field Arithmetic

As I noted (at least in the speaker notes) in an earlier slide, when we're using GF(2N), addition 

becomes XOR. If you do y XOR y you always get 0, thus every element is its own additive inverse, 

so subtraction is also XOR.

However, multiplication required multiple XORs and a final reduce step which is fairly slow. Can 

we do better? Yes!

● We can pre-compute multiplication tables if the field isn't too large; then we just need to 

do a lookup.

● We can work in "log space" where multiplication becomes addition. 
○ That is, take a "generator" element (an irreducible polynomial, so "x+1" works) and raise it to all 

powers [0..N). Map each number to it's generator power and vice-versa.
○ To multiply 2 numbers, you map to their exponential number, then add them, then map back.
○ This requires 3 table lookups, but you only need 2N elements in your table instead of N2



CPU Intrinsics for faster field arithmetic

● XOR is a single CPU instruction to do carryless addition, but what about multiplication?
○ So far we've had to implement carryless multiplication in software using either repeated carryless 

addition (i.e. long form multiplication) and/or multiplication/exponent tables.

● Enter CLMUL
○ Carry-less multiplication, i.e. multiplication in a 2N field.
○ https://en.wikipedia.org/wiki/CLMUL_instruction_set

● There are also fancy CPU instructions for doing many scalar operations across a vector of 

data at once: SIMD.
○ Combine these and you can do entire matrix dot products (where the multiplication step is CLMUL 

and the addition step is XOR) with a small number of CPU instructions. 

https://en.wikipedia.org/wiki/CLMUL_instruction_set
https://en.wikipedia.org/wiki/SIMD


Cauchy Matrices

The generator matrix comes from the equation Y' = X'X-1Y

We really only need 2 properties from our X matrix:

1. X is invertible

2. Any N rows from X' are linearly independent (invertible).

Vandermonde matrices satisfy these properties, but so do Cauchy matrices. Square Cauchy 

matrices are always invertible (by their construction) and every submatrix of a Cauchy matrix is 

also a Cauchy matrix meaning a square submatrix is invertible.

Some RS algorithms use Cauchy matrices because they allow for different matrices to be used 

and some of those matrices actually guarantee less XORs are needed when doing multiplication! 

You can read briefly about it here or see a full paper about it here.

https://en.wikipedia.org/wiki/Cauchy_matrix
https://www.usenix.org/legacy/event/fast09/tech/full_papers/plank/plank_html/
https://library.eecs.utk.edu/storage/171phpm11QF4ut-cs-05-569.pdf


Why did I write this?

It started as I was reading the second chapter of "A Programmer's Introduction to 

Mathematics". It discussed polynomials and at the end of the chapter presented a 

programming-related application, Shamir's Secret Sharing algorithm. While reading that, I 

realize it was very similar to Reed Solomon which I was familiar with in practice (a few years ago 

I tried learning how it worked, but then got scared off when I saw the word "polynomial" :P). I 

was looking for a programming project and thought making a Reed-Solomon encoder would be 

fun. Little did I know I needed to learn a lot more (about fields and block codes) to do it right. I 

implemented something that didn't work, then spent lots of time learning about the 

mathematics of Fields. I also spent a lot of time moving from the Lagrangian interpolation 

method of constructing polynomials presented in the book towards understanding the 

mathematics behind doing it via Vandermonde and Cauchy matrices. Once I finally finished my 

encoder, I thought it'd be cool to give a talk given how much time I spent learning this stuff and 

how interesting I find the math. So here we are. 

https://www.amazon.co.uk/Programmers-Introduction-Mathematics-Dr-Jeremy/dp/1727125452
https://www.amazon.co.uk/Programmers-Introduction-Mathematics-Dr-Jeremy/dp/1727125452
https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing


Additional Resources

● A Gentle Introduction to Erasure Codes 

● Finite Field Arithmetic and Reed-Solomon Coding (by the author of RE2)

● Hamming’s Code

● The Codes of Solomon, Reed, and Muller

● Reed-Solomon error-correcting code decoder

● Error Correction with Reed-Solomon

● Backblaze Video on Reed Solomon

● Backblaze open source implementation (in Java) of RS

● Implementation of RS in Go by klauspost (inspired by Backblaze implementation)

https://www.akalin.com/intro-erasure-codes
https://research.swtch.com/field
https://jeremykun.com/tag/reed-solomon-codes/
https://jeremykun.com/2015/03/23/the-codes-of-solomon-reed-and-muller/
https://www.nayuki.io/page/reed-solomon-error-correcting-code-decoder
https://www.drdobbs.com/testing/error-correction-with-reed-solomon/240157266
https://youtu.be/jgO09opx56o
https://github.com/Backblaze/JavaReedSolomon
https://github.com/klauspost/reedsolomon

